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NASA TT F-10,6L40
ON A FAMILY OF MINIMUM-DRAG BODIES
V. M. Borisov (Moscow)
ABSTRACT

The author investigates two variational problems of
supersonic gasdynamics on the determination of the shape
of minimum-drag axisymmetric bodies. In the first problem,
such a configuration consists of a generatrix passing through
three fixed points. In the second problem, two generatrices
pass through two pairs of fixed peints (channel flow). The
analysis is founded on the exact gasdynamic equations. The
flow equations are viewed as cobonds which account for the
introduction of the Lagrangian multipliers. Such a direct
method of formulation of variational problems in gasdynamics
was first proposed by Guderley, Armitage, and Sirazetdinov.

1. Let u, v be the x, y velocity components. The steady isentropic /1028
flows of a nonviscous non-heat-conducting gas with arbitrary thermodynamic
properties is described by two equations in partial derivatives (the pro-
Jected vortex and the discontinuity equation):

LlEuy_vx=Oy Lzz(yvpu)x_}_(y'é'l})U:O'i (l l)

Here v = 0 and 1, respectively, in the plane and axisymmetric cases. The
density p, the pressure p, the speed of sound a, and the Mach angle o, are
well known functions of the velocity modulus. Furthermore,

ap _ a’%:-——udu—-vdv-, sinfo = azl(uz-i—vz).}

P (1.2)

Let the parameters of the initial isentropic, supersonic flow be
prescribed (Figure 1) by the curve of the first family ae, and the shape of
the profiles ab and bc is given, respectively, by equations z =w,(¥) and
z =1n,(y% The generatrices ab and bc should be the stream Iines.

Hence,

l.lEJ)n"(y) ~ = (on ab, L= m"(y) —w=0on bel (1.3)

¥Numbers in the margin indicate the pagination in the original foreign text.
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The coordinates of the points a, b, and ¢ are considered as fixed. The
functional, correct to the constant factor which expresses the drag of the
configuration ac, is written as

’/b o ‘uc
T={pray+ § pyray. (1.4)
lla yb

In Figure 1 the regions ae,ea and bf fb represent the rarefaction flow,
obtained during the flow around the convex angles in the points a and b. 1In
the regions abfeja and befib steady supersonic flow is obtained. The line hb /1029
represents the curve to the point b. It is assumed that within the permissible
variation of the walls ab and be, the flow mode in the characteristic triangle
ace (the region under the influence of the configuration ac) remains such as
it is represented in Figure 1.

Figure 1

Let us formulate the following variational problem: in the initial flow
prescribed by the curve ae define the generatrices ab and bc, passing through
the prescribed points a, b, and ¢ and realizing the extremum of the functional
(1.4) with the differential bonds (1.3) on ab and be and the differential
bonds (1.1), (1.2) in the region ace.

Let us designate the flow region hbceh by To, and the region abha by Tty.
In view of the fact that the Equations (1.1) employed are hyperbolic, the
variation of the flow parameters in the region 1, affects the pressure distri-
bution only along the wall be, therefore the differential bonds (1.1) in the
region 15 will be considered by means of the factors hq » hoo(x, y), and
in the region T, by means of the factors hll( . hgl%x Let the factors
Cl(Y), c2(y) reéspectively, account for the bonds (l.

Let us compose the functional:
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SS (Lihyy + Lzhm) dudy + S S (Lntia + Lahos) dzdy.

In the permissible variation, the variations T and TO agree in view of
Equations (1.1) - (1.3). Let us determine the functions u(x, y), v(x, y),
Ul(y), and ng(y) so that the functional TO attains an extremal value. Here P
and p are functions of u and v, and, according to Formula (1.2)

8p = — pudu — pvdo, Op B %Gu—w 2 5.

y a®

The variations of double integrals coupled by the changes in the boundaries

in the regions 14 (i = 1 and 2), are absent due to the equality to zero of
the integrands. Since the points a, b, and ¢ are fixed, then the wvariations
of the integrals along ab and bc, related to the changes in the coordinates

in the points a, b, and ¢, are also absent. The derivatives of the variations
of the functions are excluded in the double integrals by means of the formulas
of integration by parts and Green's.

Taking the azbove into account, and utilizing Equations (1.1) - (1.3), we /1030
find
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The factors with the variations of u, v, nj, and np are the well known
functions of flow parameters and Lagrangian multipliers. The integral along
the prescribed curve ae vanishes, since on it du = v = 0. Let us determine
the Lagrangian multiplier, converting sTY to zero.

In the regions Tl, we have
Uu=— (hu),,+ N (hzt) — (1 -«——)(hm =0,

Vae= (), + 402 (hat),— 90 (1 — 25 ) (o), = 0. .




Equating the coefficients with dny and dny, to zero, we have
ay) =—yp (u+é§1) Oniiﬁ?‘:f',,b?‘cz (¥) =—yp (U +A) on be

where Xy and Ao are arbitrary constants of integration.

Equating to zero the coefficients in the integrals along the generatrices
with 6u and 8v, and taking into account the above formulas, we have

By = — Y08 Jh’i,#F — (u.A): on ab,

hyy = — v, hagimhr (u + Ay onbe. (1.6)

Equating to zero the coefficients with Su and 8v in the integrals along

the curves of the second family ec and hb, we obtain, after simple transforma-
tions,

"%‘:n"’* hn"“hzzypctna =0 on ec,
E&g hﬂ - hll (hn - hal) !Ipctn(l"‘“ 0 on hb
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In satisfying the conditions (1.5) - (1.8), the first variation of the
functional (1.h4) becomes zero.

Let us perform an analysis of the obtained equations and boundary condi-
tions for the determination of the functions hjs(x, y), hoi(x, y). The
equation system (1.5) at supersonic velocities is of the hyperbolic type.

The equations of the curves are of the form:

&y =18 (0 +.0)dz, dhipr—ghypetna =0 (first family) (1.9)
dy = tg (8 — a) dz, dhy + dhuy’pctna =0 (second family) (1.10)

Here & is the angle of inclination of the velocity vector to axis x.

The differential stipulation of consistency (1.10) on the curve ec may be
integrated by means of condition (1.7). We have

. Voo 3 omd v , A
hia = (May’pctn @)™ 'h” G /_,y petna)™ (1.11)

where A3 is the arbitrary constant of integration.

The values of the functions hll’ ho] on ab, and h21, hos, on be, definable
by formulas (1.6), are initial data in the solution of the Cauchy problem for
the system (1.5). They define the functions hjy, hpy in the region abhja, and
the function hj,, hpy in the region befib. A result obtained in the work [3]
shows that the equalities (1.6) are integrals of the system (1.5) and thus

Y
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define the functions hq;, hpo; in the regions indicated above. Employing the
integrals for hli’ and hoj and the conditions (1.11), (1.8) we have

. (1.12)
U —vtana = — A, ypi*. tana = Ajon fic,
_ . (1.13)
E = hyg + ypv — (hog + u+A;) y% clna = 0 on kb,
Bia = — ypv, hgy = — (u-edy) on bf, (1.14)
hy = — ypv, hyy = — (u + A)) on ah,. (1.15)

The relations (1.12) were obtained by Yu. D. Shmyglevskiy [b4] in an
investigation of the variational problem in the construction of the generatrix
with fixed points b and ¢ and with the fixed curve bf. The constants A, and
A3 may be determined from the value of the gasdynamic parameters in the point
fj. The solution of the Gurs problem for equations (1.5) according to the
values of hyp and hopy on the curves bf) and fieg (formulas (1.1k4) and (1.11))
define h,, and hpp in the region hibfje;h. The constant X; is determined
from the conditions of vanishing of the function E in the point b on
approaching the point b from the side of the wall ab.

The condition (1.8) on the segment hh, , the formulas (1.11) and (1.15),
and the values obtained for hjp, hoo on the segment hje;, may be used to
determine the factors hy;, hpoi in the region aejea. If, furthermore, the
function E on the segment h b becomes zero and the relations (1.12) are
satisfied on the curve fyc, then the variation of the functional (1.k4) on
the constructed flow will vanish. The following fact should also be noted.
The curve hb is, generally speaking, the discontinuity line for the Lagrangian
multipliers which account for the differential bonds (1.1). In this respect,
the book by N. M. Gyunter [5] should be mentioned. For variational problems
in gasdynamics this fact was first indicated by A. N. Krayko [6].

The analysis performed for the conditions of stationarity makes possible
the construction of a solution by means of the iteration process. On the
prescribed curve ae the point e is fixed, and, furthermore, the angle of
deflection of the configuration in the point b is also fixed. The interval
from x5 to x,, is divided into N segments with fixed abscissas, x, (n=0,1,
«..,N). A generatrix ab, which is the initial approximation of the sought
generatrix, is drawn through the points a and b. A solution by the
numerical method of characteristics of the streamline problem of the generatrix
ab provides the flow parameters in the region abfiea. This makes it possible
to calculate the constants A3 and Ay in the point f;. The knowledge of the
value of the factors hyo, hoo on the curves e;f, and flb, makes it possible, by
solving the Gurs problem by the numerical methoé of characteristics, to deter-
mine the factors in the region hbf,e hl= to calculate the constant Ay, and to
determine the function E on the curve hjb. The angles of inclination (x,) of
the new generatrix ab are found by means of formula

/1032
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Figure 2 - Figure 3

Here § is the number of iterations, &(x_) is the number of curves of the
first family resulting from the point of the generatrix ab with the abscissa
Xn», €.1s a random number, and |8[<§dfﬁwﬂj is the parameter which
defines the conditions for the new generatrix to pass through the points a
and b. The calculations may be repeated until the function E on h;b is equal
to zero. After this, the curve fyc is drawn from the point f; to the point ¢
with a zero flow rate value. The generatrix bec is found from the solution by
the numerical method of characteristics of the Gurs problem according to the
curves bfl and fyc which are now known.

The constructed configuration ac is the sought configuration if the
prescribed point ¢ coincides with that obtained. Two arbitrary parameters
(the position of the point e on the prescribed curve ae and the angle of
deflection of the configuration in the point b) make it possible to solve the
linear problem.

As an example, a calculation is made of the rear generatrices of minimum-
drag bodies of revolution. The supersonic incoming flow of an ideal gas with
an adiabatic curve index of yx = 1.4 is assumed to be unperturbed. Figures 2
and 3 show the configurations passing through the prescribed points a, b, and
¢, and with a minimum drag for Mach numbers M, = 1.5 and M, = 2. The broken
lines represent the distribution along the pressure generatrices p, related to
pmu& . The values of the drag coefficients c, are given in the figures.

2. Let us examine the problem of the determination of the shape of the
generatrices passing through the fixed points a, b and ¢, d, and ensuring
minimum channel drag. Figure L4 shows one of the possible schemes of optimum
flow. The initial flow, prescribed by the curve ae, is considered to be
isentropic and nonvortical. The region of influence of abfdcea of the sought
configuration is bounded by the generatrices of the channel, the prescribed curve
ae, and the curves passing through the points ¢, 4, and b. In Figure L, the
flow region af|ffpcea represents the region of the interaction of rarefaction
waves generated by the deflections of the stream lines in the points a and
c. The regions abfya and cfedc represent steady supersonic flow. As in the
first section, the flow in the region of influence of the configuration is
assumed to be isentropic. Furthermore, it is assumed that within the
permissible variation of the channel generatrices the flow scheme remains such



as it is represented in Figure 4. It will be shown that this scheme may provide
a solution to the variational problem in minimum-drag channels. The functional
which describes the configuration drag is written as

Yy Ve
T = S py'dy + S py*dy. (2.1)
Va“ Vg4

Figure 4

Let the shape of the profiles ab and cd, respectively, be prescribed by
‘the equations x = n; (y), x = np (y). The generatrices ab and cd should
be the stream lines. Hence, equations (1.3) are valid along them.

Let us formulate the following variational problem: in the initial flow
prescribed by the curve ae to define the generatrices ab and cd, which pass
through the prescribed points a, b and ¢, d and which realize the extremum of
the functional (2.1) with the differential bonds (1.3) on ab and cd and the
differential bonds (1.1), (1.2) in the region of influence of .

Let us divide the region of influence of the sought configuration into
four subregions, and designate T as the subregion abfa, T, as the subregion
cfdce, T3 as the subregion afca, and T), as the subregion acea. In composing
the Lagrangian functional TO the bonds (1.1) in the subregions are 13 (1 =1,

2, 3, 4). The Lagrangian multipliers hy; (x, ¥), hoy (x, y) are accounted for
by means of the four groups. The bonds %1.3) on the generatrices ab and cd

are taken into account, respectively, by means of the multipliers ¢y (y), coly).
Then -

1= \ [py' + e by +\ 1y + ca ) il dy + B\ (Labs + Labw)dr .
o e T

The calculation of the variations of the functional T° is analogous to
the calculations performed in Section 1. The conditions of stationarity are of

7
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the following form: 1in the subregion 1; for the determination of the factors
hyj, hy; the equations (1.5) are valid, and in the generatrices ab and cd the
formulas (1.6) are obtained. Further, we have

hiyy — hyypetna =0 -+ . . on ec,
| Ry — hyy'petna =0 ' on fb,
| his -+ hyy*p cina = 0 onfd,

| hiy — Ryg — (hag — hy) y'p ctna = 0, on fe,
Iug — hyy + (hag — har) y'p ctn & = 0, onfa.
Ryy — hyy 4 (Byy — hyy) y'p ctna = 0, onca.

By employing the integrals of the multipliers hll’ h21 in the region abf,a,

1

the integrals of the multipliers h12’ h22 in the region cfzdc. and the conditions

of consistency (1.9), (1.10) which were integrated by means of the written out
conditions, it is possible to demonstrate that the obtained conditions of
stationarity will be satisfied provided the following relations are satisfied:

P U — v-tama = A’l' yvpv2 tan}'a = 7\'3: onflb, (2.2)

'u4 vtana = — Ay YV tanla = A, onf.,d, (2.3)

where A7, >\3 and A,, A, are arbitrary constants of integration definable from
the values of the gasdynamic parameters in the points f; and f,, respectively.

The construction of the optimal channel is achieved as follows: the flow
field in the region af) ff,cea is constructed by the numerical method of
characteristics on the prescribed curve ae and the point c¢. By means of
formulas (2.2) and (2.3) curves are plotted from the points f, and f, to the
points b and d with a flow rate value of ¢ = O and ¢y = P,.” Further, using
the known curves af,, fb, and cf,, fpd the generatrices ab and cd are found by
solving the Gurs problem. Four arbitrary lines relative to the position of the
points f1 and fp, in the pencils of rarefaction make it possible, generally

speaking, to plot the extremal curves flb and fpd to the prescribed points D
and d.

As an example, axisymmetric optimal channels were constructed with genera-
trices passing through the prescribed points a, b and ¢, d. The incoming
supersonic flow of an ideal gas with an adiabatic curve index of n = 1.4 was
assumed to be unperturbed. Figures 5 and 6 show minimum-drag channels for
Mach number M, = 1.5. The broken lines represent the distribution along the
pressure generatrices p, related to p,u2 . The values of the drag coefficients
cx are equal to: c, = 0.1748 and Cy = 0.2728, respectively. In calculating Cx

X
an area oOf a cross section with a radius ya was employed.
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Figure 5 Figure 6
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